cho các số dương x,y,z,t . Chứng minh: \(\frac{40}{3}\le\frac{x}{y+z+t}+\frac{y}{z+t+x}+\frac{z}{t+x+y}+\frac{t}{x+y+z}+\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}\)
Cho ba số dương x,y,z. Chứng minh rằng:
\(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2y}\le\frac{3}{4}\)
Cho Các số thực dương x, y, z thỏa mãn x +y +z=9 (x>1, y>2, Z>3)
Cmr \(\frac{x}{y^2-4y+5}+\frac{y-1}{z^2-6z+10}+\frac{z-2}{x^2-2x+2}\ge3\)
Cho x,y,z là các số thực dương thỏa mãn \(xyz=1\)
\(CMR:\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}\le\frac{1}{2}\)
Cho các số dương x, y, z thỏa mãn điều kiện \(x^2+y^2+z^2=1\).
CMR \(\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{1}{3}\)
cho \(0\le x;y;z\le1.\)CMR:\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
Cho \(0\le x,y,z\le1\). CMR:
\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
Cho x,y,z là độ dài 3 cạnh của tam giác. CMR
\(\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\le\frac{x+y+z}{2xyz}\)
cho x,y,z là các số dương thỏa mãn \(x^2+y^2+z^2=1\).chứng minh:
\(\frac{x}{y^2+z^2}+\frac{y}{z^2+x^2}+\frac{z}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}\)