Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x,y,z là 3 số thực tùy ý thỏa mãn x+y+z = 0 và \(-1\le x\le1,-1\le y\le1,-1\le z\le1\)
Cmr đa thức x2 +y4+z6 có giá trị không lớn hơn 2
cho x,y,z là 3 số thực tùy ý thỏa mãn x+y+z=0 và\(-1\le x\le1,-1\le1\le1,-1\le z\le1.\)CMR đa thức x2+y4+z6 có giá trị ko lớn hơn 2
Cho x, y, z là 3 số thực tùy ý thỏa mãn x + y + z = 0 và -1 \(\le\)x; y; z \(\le\)1 .
CMR : đa thức x2 + y4 + z6 có giá trị không lớn hơn 2.
Cho x, y, z là 3 số thực tùy ý thỏa mã x + y + z = 0 và -1 \(\le\)x, y, z\(\le\)1.
CMR : đa thức x2 + y4 + z6 có giá trị không lớn hơn 2
Cho x,y,z là 3 số thực tùy ý thỏa mãn : \(x+y+z=0\) và \(-1\le x\le1;-1\le y\le1;-1\le z\le1\)
CMR : Đa thức : \(x^2+y^4+z^6\le2\)
Cho x,y,z là 3 số thực tùy ý thỏa mãn x+y+z=0 và -1\(\le\)x\(\le\)1 ; -1\(\le\)y\(\le\)1 ; -1\(\le\)z\(\le\)1 . Chứng minh rằng đa thức x2+y4+z6 có giá trị không lớn hơn 2
(Khó quá ai thông minh giúp mình làm bài này nha)
AE ơi giúp mik câu này với ai nhanh nhất mik tick nha
Cho x;y;zlaf 3 số thực tùy ý x+y+z=6 và \(-1\le x\le1;-1\le y\le1;-1\le z\le1\)
Chứng minh đa thức \(x^2+y^4+z^6\) có giá trị không > 2
Cho \(x,y,z\inℝ\) tùy ý thỏa mãn : \(x+y+z=0\) và : \(-1\le x\le1;-1\le y\le1;-1\le z\le1\)
CMR : Đa thức : \(x^2+y^4+z^6\le2\)
\(1.\)Cho \(x,y,z\)là ba số thực thỏa mãn \(x+y+z=0\)và \(-1\le x\le1;-1\le y\le1;-1\le z\le1\)
\(CMR:x^2+y^4+z^6\le2\)