Cho x,y,z là các số thực dương thỏa mãn : x+y+z=xyz
Chứng minh rằng : \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)
Cho x,y,z là các số thực thỏa mãn xyz=1
Tìm GTLN của \(A=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)
cho x,y,z là các số thực dương thỏa mãn xyz=1 . Tìm max của \(A=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)
cho x,y,z là các số thực dương thỏa mãn x+y+z=xyz.CMR
\(\dfrac{x}{1+x^2}+\dfrac{2y}{1+y^2}+\dfrac{3z}{1+z^2}=\dfrac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
cho x,y,z là các số thực dương thỏa mãn : xyz=1 tìm MAX của \(A=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+y^3+1}\)
cho x,y,z là các số thực khác 0 thỏa mãn
\(\left\{{}\begin{matrix}\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xyz}=1\\x+y+z=1\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}>0\end{matrix}\right.\)
tính P=\(x^{2023}+y^{2023}+z^{2023}\)
Cho x,y,z là các số thực dương thỏa mãn x+y+z=xyz.Chứng minh rằng:
a)\(3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le xyz\)
b)\(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)
Cho 3 số thực x, y, z thỏa mãn: xyz = 1.Chứng minh rằng:
Nếu \(x+y+z>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) thì trong 3 số x, y, z có duy nhất một số lớn hơn 1.
chờ x,y,z là các số thực dương thỏa mãn xyz=1.CMR
\(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}\le1\)