Cho các số dương x,y,x thỏa mãn:
\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\)
Tìm max P = xyz
Cho ba số dương x,y,z thỏa mãn \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\)..Tìm GTLN của xyz
Cho x,y,z>0 thỏa mãn \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge2\) CMR \(xyz\le8\)
Cho x, y, z là các số thực dương thỏa mãn: x + y + z = 1.
Tìm max của \(P=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\)
Cho x, y, z là 3 số dương thỏa mãn xyz=1
Tìm GTLN của biểu thức: A= \(\frac{1}{x^3+y^3+1}\)+\(\frac{1}{y^3+z^3+1}\)+\(\frac{1}{z^3+x^3+1}\)
Cho 3 số dương x,y,z thỏa mãn\(x^2+y^2+z^2< 2\)
Chứng minh \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}< \frac{1}{xyz}\)
a,cho các số x,y,z khác 0 thoả mãn
\(x-2y+\frac{z}{y}=z-2x+\frac{y}{x}=x-2z-\frac{y}{z}\).Tính giá trị biểu thức A=\(\left(1+\frac{y}{x}\right)\times\left(1+\frac{y}{x}\right)=\left(1+\frac{x}{z}\right)+2020\)
b, tìm các số tự nhiên x,y thoả mãn xy+4x=35+5y
c, tìm các số tự nhiên x,y thoả mãn 2^/x/+y^2+y=2x+1
Cho x,y,z là các số thực khác 0 thoả mãn xyz=1. Chứng minh rằng:
\(\frac{x^2}{\left(y-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)
Cho x,y,z là các số thực dương thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Tìm max của \(P=\frac{1}{\sqrt{2x^2+y^2+3}}+\frac{1}{\sqrt{2y^2+z^2+3}}+\frac{1}{\sqrt{2z^2+x^2+3}}\)