KT

Cho xyz = 2006

Cmr: \(\frac{2006}{xy+2006x+2006}+\frac{y}{yz+y+2006}+\frac{z}{xz+z+1}=1\)

MH
11 tháng 12 2015 lúc 10:41

Ta có: xyz=2006

Đặt tổng (đề) trên là A ( phân số thứ nhất tử là 2006x nhé)

=> \(A=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}=\frac{xz+1+z}{xz+z+1}=1\)

=> A = 1 (đpcm).

 

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
LK
Xem chi tiết
DT
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
HU
Xem chi tiết
YH
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết