ta cm BĐT x^2 + y^2 + z^2 \(\ge\)\(\frac{\left(x+y+z\right)^2}{3}\)
bằng cách biến đổi tương đương
rồi áp dụng
ta cm BĐT x^2 + y^2 + z^2 \(\ge\)\(\frac{\left(x+y+z\right)^2}{3}\)
bằng cách biến đổi tương đương
rồi áp dụng
Cho x+y+z=3Chứng minh
\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}.\)
cho x,y,z là các số dương thỏa mãn \(x^2+y^2+z^2=1\).chứng minh:
\(\frac{x}{y^2+z^2}+\frac{y}{z^2+x^2}+\frac{z}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}\)
Cho x,y,z>0. Chứng minh rằng:
\(\left(\frac{x}{x+y}\right)^2+\left(\frac{y}{y+z}\right)^2+\left(\frac{z}{z+x}\right)^2\ge\frac{3}{4}\)
Cho các số thực dương x,y,z thỏa mãn x+y+z=3. Chứng minh rằng: \(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\)
Cho x,y,z\(\in R^+\).Chứng minh \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\)
Bài 4:Cho các số thực dương x,y,z thỏa mãn x+y+z=3.Chứng minh rằng
\(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\)
Cho x,y,z>-1 thỏa mãn
\(x^3+y^3+z^3\ge x^2+y^2+z^2\)
Chứng minh rằng
\(x^5+y^5+z^5\ge x^2+y^2+z^2\)
Chứng minh \(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\) với x + y + z = 3
Cho các số dương x, y, z thỏa mãn: x2 + y2 +z2\(\ge\)1. Chứng minh rằng \(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge1\)