MN

Cho x,y,z >0 và x+y+z=3 CM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\ge xy+yz+zx\)

TT
19 tháng 8 2015 lúc 6:23

Theo bất đẳng thức Cô-Si cho ba số dương \(x^2+2\sqrt{x}=x^2+\sqrt{x}+\sqrt{x}\ge3\sqrt[3]{x^2\cdot\sqrt{x}\cdot\sqrt{x}}=3x.\)

Vậy ta có \(x^2+2\sqrt{x}\ge3x.\)     Tương tự  \(y^2+2\sqrt{y}\ge3y,\) và    \(z^2+2\sqrt{z}\ge3z.\)  Cộng các bất đẳng thức lại ta được

\(\left(x^2+y^2+z^2\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge3\left(x+y+z\right)=\left(x+y+z\right)^2\)  . Suy ra

\(\left(x^2+y^2+z^2\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\ge xy+yz+zx.\)    (ĐPCM)

Bình luận (0)
TT
18 tháng 8 2015 lúc 22:22

Theo bất đẳng thức Cô-Si cho 3 số \(x^2+2\sqrt x=x^2+\sqrt x+\sqrt x\ge 3\sqrt[3]{x^2\sqrt x\sqrt x}=3x.\) Tương tự, ta cũng có \(y^2+2\sqrt y\ge3y,z^2+2\sqrt z\ge3z.\) Cộng lại ta được \(x^2+y^2+z^2+2\sqrt x+2\sqrt y+2\sqrt z\ge3(x+y+z)=(x+y+z)^2\). Từ đây khai triển bình phương vế phải sẽ được \(2(\sqrt x+\sqrt y+\sqrt z)\ge 2(xy+yz+zx).\) Do đó ta có điều phải chứng minh.

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
NT
Xem chi tiết
ND
Xem chi tiết
DD
Xem chi tiết
TH
Xem chi tiết
NH
Xem chi tiết
ND
Xem chi tiết
NM
Xem chi tiết
LD
Xem chi tiết