cho x;y ;z>0 thỏa mãn x+y+z=2008
c/m \(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge2008\)
cho x,y,z>0 thỏa mãn x+y+z=2018
tìm GTNN của \(P=\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\)
cho x,y,z là các số thực dương thỏa mãn x,y,z>0 thỏa mãn x(x-z)+y(y-z) =0 tìm GTNN của \(P=\frac{x^3}{x^2+z^2}+\frac{y^3}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)
cho x,y,z thuộc R, thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) tính M=\(\frac{3}{4}+\left(x^2-y^2\right)\cdot\left(y^3+z^3\right)\cdot\left(z^4-x^4\right)\)
Cho x,y,z > 0 thỏa xy+yz+zx=xyz. Chứng minh:
\(\frac{x^4+y^4}{xy\left(x^3+y^3\right)}+\frac{y^4+z^4}{yz\left(y^3+z^3\right)}+\frac{z^4+x^4}{zx\left(z^3+x^3\right)}\ge1\)
x,y,z>0,x+y+z=2015. MIN
A=\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\)
\(Cho\text{ }x,y,z>0\text{ và }x+y+z=1.CMR:\)
\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{x^4+z^4}{x^3+z^3}\ge1\)
cho \(x,y,z,t\ge0\) thỏa mãn \(x+y+z+t\ge4\). TÌm min của \(M=\frac{x^4+y^4+z^4+t^4}{x^3+y^3+z^3+t^3}\)
Cho \(x;y;z;t>0\)thỏa \(x+y+z+t=1\). Chứng minh: \(\frac{x^4+y^4+z^4+t^4}{x^3+y^3+z^3+t^3}\ge\frac{1}{4}\)