1, CMR với mọi số thực a, b luôn có: \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\) và \(ab\le\frac{1}{4}\left(a+b\right)^2\)
2, Cho x, y, z là các số thực dương thoả mãn \(5\left(x^2+y^2+z^2\right)-9x\left(y+z\right)-18yz=0\)
Tìm GTLN của \(E=\frac{2x-y-z}{y+z}\)
Cho x,y,z>0 thỏa mãn xyz=1. Tìm min \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
cho x,y,z là các số thực dương thỏa mãn 5(x2+y2+z2)-9x(y+z)-18yz=0
tìm GTLN của biểu thức Q=\(\frac{2x-y-z}{y+z}\)
Cho x,y,z>0 thỏa mãn x+y+z=1. Tìm GTNN của \(P=\frac{x^2\left(y+z\right)}{yz}+\frac{y^2\left(z+x\right)}{zx}+\frac{z^2\left(x+y\right)}{xy}\)
Cho x;y;z > 0 thỏa xyz = 1
Tìm max \(A=\left(\frac{2}{\sqrt{x}}-z\right)\left(\frac{2}{\sqrt{y}}-x\right)\left(\frac{2}{\sqrt{z}}-y\right)\)
Cho x,y,z>0 thỏa mãn: x+y+z=3. Tìm GTNN của \(P=\frac{\left(x+1\right)^2.\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2.\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2.\left(x+1\right)^2}{y^2+1}\)
Cho x,y,z là các số thực thỏa mãn x+y+z = 0
Chứng minh \(P=\frac{x\left(x+2\right)}{2x^2+1}+\frac{y\left(y+2\right)}{2y^2+1}+\frac{z\left(z+2\right)}{2z^2+1}\ge0\)
Cho 3 số x,y,z thỏa mãn 0<x,y,z\(\le\)1 và x+y+z=2
Tìm GTNN của A=\(\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\)
Tìm max
\(A=3\sqrt{2x-1}+x\sqrt{5-4x^2}\left(\frac{1}{2}\le x\le\frac{\sqrt{5}}{2}\right)\)
\(B=\frac{xyz\left(x+y+z+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}\left(x,y,z>0\right)\)