Áp dụng AM-GM có:
\(\sqrt{\frac{yz}{x^2+2017}}=\sqrt{\frac{yz}{x^2+xy+yz+xz}}=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\)
\(\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{z}{x+z}\right)\)
Thiết lập 2 BĐT tương tự rồi cộng theo vế
\(Σ\sqrt{\frac{yz}{x^2+2017}}\le\frac{1}{2}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{x+z}{x+z}\right)=\frac{3}{2}\)
Khi \(x=y=z=\sqrt{\frac{2017}{3}}\)