Theo đề ta có :
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)(vì x +y+z \(\ne\)0)
\(\frac{x}{y}=1\Rightarrow x=y\) (1) . \(\frac{y}{z}=1\Rightarrow y=z\)(2)
Từ (1) vs (2) \(\Rightarrow x=y=z\)
\(\Rightarrow\frac{x^{2007}.z^{4014}}{y^{6021}}=\frac{x^{2007}.x^{4014}}{x^{6021}}=\frac{x^{2007+4014}}{x^{6021}}=\frac{x^{6021}}{x^{6021}}=1\)