Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

TN

Cho \(x,y\ge1.CMR:\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

VC
1 tháng 1 2018 lúc 23:27

Cái này biến đổi tương đương nhé, t có mỗi cách đó !

ta có BĐT cần chứng minh 

\(\Leftrightarrow\left(1+xy\right)\left(1+x^2\right)+\left(1+xy\right)\left(1+y^2\right)\ge2\left(1+y^2\right)\left(1+x^2\right)\)

\(\Leftrightarrow1+x^2+xy+x^3y+1+y^2+xy+y^3\ge2\left(1+x^2+y^2+x^2y^2\right)\)

\(\Leftrightarrow2xy+x^3y+xy^3-x^2-y^2-2x^2y^2\ge0\)

\(\Leftrightarrow xy\left(x-y\right)^2-\left(x-y\right)^2\ge0\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\)

bđt này luôn đúng với \(x,y\ge1\)

dấu = xảy ra <=> x=y >=1

^_^

Bình luận (0)

chọn của vũ tiền châu nhé

nhớ đêý

cảm ơn 

t i c k nhé

kí tên hà ơi quá khắm :vvv

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NH
Xem chi tiết
NH
Xem chi tiết
FT
Xem chi tiết
NC
Xem chi tiết
HM
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
LC
Xem chi tiết