quy đồng BĐT \(\frac{\left(xy-1\right)\left(x-y\right)^2}{\left(x^2+1\right)\left(y^2+1\right)\left(xy+1\right)}\ge0\forall xy\ge1\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
quy đồng BĐT \(\frac{\left(xy-1\right)\left(x-y\right)^2}{\left(x^2+1\right)\left(y^2+1\right)\left(xy+1\right)}\ge0\forall xy\ge1\)
Cho\(x;y\ge1\). Chứng minh rằng:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Cho \(xy\ge1\). Chứng minh rằng:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Bạn nào có thể ghi chi tiết cách giải ra hộ mình được không?
Cho \(x,y\ge1.CMR:\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Cho |x|; |y| < 1. Chứng minh rằng :
\(\frac{1}{1-x^2}+\frac{1}{1-y^2}\ge\frac{2}{1-xy}\).
cho x; y>=1
chứng minh rằng:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Cho x>1; y>1. Chứng minh \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Cho 2 số thực x,y là các số lớn hơn hoặc bằng 1.Chứng minh rằng: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng:
a)\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
b)\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{3}{1+xyz}\)
Cho x, y là các số thực dương. Chứng minh rằng: \(\frac{\left(x+y+1\right)^2}{xy+y+x}\)+\(\frac{xy+x+y}{\left(x+y+1\right)^2}\)\(\ge\)\(\frac{10}{3}\)