Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x,y là hai số thực thỏa mãn \(2x^2+\frac{y^2}{4}:\frac{1}{x^2}=3\) . Tìm Max,Min của B = 2020 + xy
Cho hai số thực dương x,y thỏa mãn x+y>=3 . Tìm GTNN của biểu thức
P=\(^{2x^2+y^2+\frac{28}{x}+\frac{1}{y}}\)
Cho x;y;z dương và x+y+z=3.Tìm Min của \(\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)
cho x>0 , y>0 , x+y =2012
a) Tìm Max \(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}\)
b) Tìm Min \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\)
Cho 2 số thực dương x,y thỏa mãn \(x+y\ge10\).
Tìm Min của biểu thức sau: \(P=2x+y+\frac{30}{x}+\frac{6}{y}\)
Cho x + y = 1 ; x>0 ; y>0 . Tìm min của :
1. \(\frac{a^2}{x}+\frac{b^2}{y}\) ( a,b là hằng số dương đã cho )
2. \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
Cho x,y >0 và \(\frac{4}{x^2}+\frac{5}{y^2}\)>= 9. Tìm min K= \(2x^2\)+ \(\frac{6}{x^2}+3y^2+\frac{8}{y^2}\)
Cho x,y>0 thỏa mãn x+y=1.Tìm min của P=\(\left(1-\frac{1}{x^2}\right)\times\left(1-\frac{1}{y^2}\right)\)
Tìm min, max của \(A=\frac{x^4+1}{\left(x^2+1\right)^2}\)
Min:
\(A=\frac{x^4+1+2x^2-2x^2}{x^4+2x^2+1}=1-\frac{2x^2}{\left(x^2+1\right)^2}\)
Nhận xét: \(\frac{2x^2}{\left(x^2+1\right)^2}\ge0\)
=> \(1-\frac{2x^2}{\left(x^2+1\right)^2}\ge1\)
Dấu = <=> x=0
Max:
Đặt x2=a
Đặt x-1=y
Đặt 1/y=z
Câu này nâng cao lắm, chắc mình chưa cần giải đâu.
Ra Min=1/2 <=>x=1