TN

Cho xy=1

Tìm GTLN và GTNN của   \(A=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)

TP
8 tháng 4 2019 lúc 6:13

Áp dụng bđt Cauchy cho 2 số không âm :

\(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y=2xy\cdot x=x\)( vì \(xy=1\))

\(\Rightarrow\frac{x}{x^4+y^2}\le\frac{x}{x}=1\)

Hoan toàn tương tự : \(\frac{y}{x^2+y^4}\le\frac{y}{y}=1\)

Khi đó :

\(\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\le1+1=2\)

Hay \(A\le2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^4=y^2\\x^2=y^4\\xy=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}}\)

Bình luận (0)
H24
8 tháng 4 2019 lúc 20:16

Thêm đk x,y>0

*Tìm giá trị lớn nhất:

\(A=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\le\frac{x}{2xy.x}+\frac{y}{2xy.y}=\frac{x}{2x}+\frac{y}{2y}=\frac{1}{2}+\frac{1}{2}=1\)

Dấu "=' xảy ra khi x = y = 1

P/s: Bài này hình như không có Min thì phải.:>

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
HL
Xem chi tiết
QT
Xem chi tiết
TN
Xem chi tiết
DH
Xem chi tiết
PN
Xem chi tiết
NP
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết