Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

AO

Cho \(x+y>1\). Chứng minh rằng \(x^4+y^4>\frac{1}{8}\).

LD
22 tháng 3 2021 lúc 19:54

Em chỉ biết làm \(\hept{\begin{cases}x+y\ge1\\x^4+y^4\ge\frac{1}{8}\end{cases}}\)thôi ạ :v 

Áp dụng liên tiếp hai lần bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left[\frac{\left(x+y\right)^2}{2}\right]^2}{2}=\frac{\frac{\left(x+y\right)^4}{4}}{2}=\frac{\frac{1}{4}}{2}=\frac{1}{8}\)( đpcm )

Đẳng thức xảy ra <=> x=y=1/2

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
AO
Xem chi tiết
AO
Xem chi tiết
AO
Xem chi tiết
AO
Xem chi tiết
AO
Xem chi tiết
AO
Xem chi tiết
AO
Xem chi tiết
AO
Xem chi tiết
AO
Xem chi tiết