cho x,y thỏa: (x+y)^2 +7(x+y)+y^2+10=0 . Tìm Max và Min của T=x+y+1
1, Cho x,y: x+y=1 và x>0. Tìm Max A = x2y3
2, Cho x,y,z >0 thỏa mãn : xy+yz+zx=1. Tìm Max \(A=\frac{2x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\)
1. Cho x,y,z >0 t/m: \(\dfrac{1}{1+x}+\dfrac{1}{1+y}+\dfrac{1}{1+z}=2\)
Tìm max (xyz)
2. Cho \(2x^2+y^2-2xy=1\)
a) CM: |x| ≤ 1
b) Tìm max \(P=4x^4+4y^4-2x^2y^2\)
Cho\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
và xy>0.Tìm max: M=\(\frac{1}{x}+\frac{1}{y}\)
1) Cho x;y>0 thoả mãn x+y=1 Tìm max B = \(x^2y^3\)
2) Cho x+y>0 thoả man x-y >= 1 Tìm max C = \(\frac{4}{x}-\frac{1}{y}\)
3) Tìm min M = \(\frac{x-3}{\sqrt{x-1}-\sqrt{x}}\)
1. Cho a, b là các hằng số dương. Tìm min A=x+y biết x>0, y>0; \(\frac{a}{x}+\frac{b}{y}=1\)
2.Tìm \(a\in Z\), a#0 sao cho max và min của \(A=\frac{12x\left(x-a\right)}{x^2+36}\)cũng là số nguyên
3. Cho \(A=\frac{x^2+px+q}{x^2+1}\) . Tìm p, q để max A=9 và min A=-1
4. Tìm min \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\) với x,y,z>0 ; \(x^2+y^2+z^2\le3\)
5. Tìm min \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\) với \(x+y\ge6\)
6. Tìm min, max \(P=x\sqrt{5-x}+\left(3-x\right)\sqrt{2+x}\) với \(0\le x\le3\)
7.Tìm min \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\) với x>0, y>0; x+y=1
8.Tìm min, max \(P=x\left(x^2+y\right)+y\left(y^2+x\right)\) với x+y=2003
9. Tìm min, max P = x--y+2004 biết \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
10. Tìm mã A=|x-y| biết \(x^2+4y^2=1\)
Cho x, y >=0 thoả mãn x+y=1
Tìm min và max của A=x2+y2
Tìm max và min của A= x3 + y3 biết x,y >= 0 và x2 + y2 = 1
Cho x+y=1 và x > 0 . Tìm MAX của B= \(x^2y^3\)