Cho 2 số thực dương x,y thỏa mãn x+y >3. Tìm giá trị nhỏ nhất của biểu thức: P= 2x^3 +y^3 +28/x +1/y?
cho các số thực dương x, y thỏa mãn x+xy+y =8 tìm giá trị nhỏ nhất của biểu thức \(x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)
Cho các số thực dương x , y thỏa mãn xy ≤ y − 1 , tìm giá trị nhỏ nhất của G = (x^2 + y^2)/xy .
Cho các số thực dương x , y thỏa mãn xy ≤ y − 1 , tìm giá trị nhỏ nhất của G = (x^2 + y^2)/xy .
Cho x, y là các số thực dương thỏa mãn x+y =1. Tìm giá trị nhỏ nhất của biểu thức:
P= \(\frac{1}{x^2+y^2}+\frac{1}{2xy}\)
cho x, y là các số thực dương thỏa mãn xy=1. Tìm giá trị nhỏ nhất của biểu thức A=x^3/(1+y)+y^3/(1+x)
Cho các số thực dương x,y,z thỏa mãn x+y+z=3
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\)
cho x,y là số thực dương thỏa mãn x^3+y^3=xy-1/27
tính giá trị của biểu thức P=(x+y+1/3)^3-3/2(x+y)+2018
Cho biểu thức \(A=\frac{4xy}{x^2-y^2}:\left(\frac{1}{x^2-y^2}+\frac{1}{x^2+2xy+y^2}\right)\). Nếu x,y là các số thực thỏa mãn \(x^2+3y^2+2x-2y=1\). Tìm các giá trị nguyên dương của A.