A=x3+y3=(x+y)(x2-xy+y2)
=(x+y)2\(\ge\)0
Dấu "=" xảy ra khi x=-y
A=x3+y3=(x+y)(x2-xy+y2)
=(x+y)2\(\ge\)0
Dấu "=" xảy ra khi x=-y
cho x,y thuộc R Thỏa mãn x^2.y^2 +2y+1=0 , tìm max, min p=xy / 3y+1
Cho \(\hept{\begin{cases}x,y\in R\\x^2+y^2=x+y\end{cases}}\)Tìm min , max A = \(x^3+y^3+x^2y+xy^2\)
1,Cho x,y>0 và xy=2018. Tìm Pmin= 2/x + 1009/y - 2018/(2018x+4y)
2,Cho x,y>0 và x+y=1. Tìm Min B=1/x3+y3 +1/xy
3,Nếu x,y thuộc N* và 2x+3y=53. Tìm max của căn(xy+4)
4,Tìm min P=x^2 +xy +y^2 -3x -3y +2019
5,Cho 0<x<2. Tìm min A= 9x/2-x +2/x
6,Tìm min D= x/y+z + y+z/x + y/x+z + z+x/y + z/x+y + x+y/z
Làm ơn giải giùm mình với, ngay mai kiểm tra rồi.
Cảm ơn nhiều :)))))
Cho x,y\(\ge0\); \(x^2+y^2=2\). Tìm min,max A=\(\dfrac{x^3+y^3+4}{xy+1}\)
cho x , y thuộc R thỏa mãn \(x^2+y^2+xy=1\)
tìm min , max của \(P=2x^2-xy+7y^2\)
cho 2 số x,y thỏa mãn \(x+y\le2\) và \(x^2+y^2+xy=3\). Tìm min và max của \(T=x^2+y^2-xy\)
1) Cho x,y>0 và x+y=< 1 Tìm min A = \(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
2) Cho x >= 3y và x;y > 0 Tìm min A = \(\frac{x^2+y^2}{xy}\)
3) Cho x >= 4y và x;y > 0 Tìm min A = xy/(x^2 +y^2)
Cho các số thực x, y sao cho x2 + y2 + xy = 3, tìm min, max của P = x + y
cho x^2 + y^2 - xy =4 Tìm min max A = x^2 + y^2