Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x và y thuộc Z
cho : 10x+2y chia hết cho 7
4x+11y chia hết cho 7
CMR : 2x^2 + 5y^2 chia hết cho7
cho x và y thuộc N thỏa mản 10x + 2y chia hết cho 7 và 4x +11y chia hết cho 7
chưng tỏ 2x^2 +5y^2 chia hết cho 7
chứng tỏ rằng nếu x,y thuộc Z và 10x+2y chia hết cho 7 và 4x+11y chia hết cho 7 thì 2x2+5y2 chia hết cho 7
cho x ;y thỏa mãn 10x+2y chia hết cho 7 và 4x+11y chia hết cho 7 chứng minh rằng x chia hết cho 7 và y chia hết cho 7
cho x;y thuộc N .CMR nếu x+3y chia hết cho 7 thì 3x +2y chia hết cho7
Chứng tỏ rằng nếu x,y\(\varepsilon\)\(ℤ\) thỏa mãn 10x+2y chia hết cho 7 và 4x+11y chia hết cho 7 thì \(^{2x^2+5y^2}\)chia hết cho 7
CMR(6x+11y) chia hết cho 31 khi và chỉ khi x+7y chia hết cho 41. Với mọi x, y thuộc N
CMR : Nếu 5x + 11y chia hết cho 7 thì x - 2y chia hết cho 7
A) Chờ x, y thuộc N thỏa mãn x+2y chia hết cho 5. CTR 3x + 11y chia hết cho 5
B) CMR: neu tong cua 3 STN lien tiep la 1 so le thi tich cua chung chia het cho 24