\(x^2\left(x^2+2y^2-3\right)+\left(y^2-2\right)^2=x^4+2x^2y^2-3x^2+y^4-4y^2+4\)
\(=\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)+3+x^2\)
\(\Rightarrow\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)+3=-x^2\le0\)
Do đó \(A^2-4A+3\le0\Leftrightarrow\left(A-1\right)\left(A-3\right)\le0\Leftrightarrow1\le A\le3\)
min A =1 \(\Leftrightarrow x=0,\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
max A = 3 <=> x = 0 , \(\orbr{\begin{cases}y=\sqrt{3}\\y=-\sqrt{3}\end{cases}}\)