Cho x,y thỏa \(\sqrt{x+2}+y^3=\sqrt{y+2}+y^3\)
Tìm gtnn của B= x2 +2xy-2y2 +2y+10
cho các số thực x,y,z thỏa mãn 0<=x,y,z<=3
tìm gtnn của A= \(\sqrt{x^2+y^2-2xy}+\sqrt{Y^2-z\left(z-2y\right)}+\sqrt{x^2+z\left(z-2x\right)}\)
cho x,y thỏa mãn \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\).TÌm già trị nhỏ nhất của\(T=x^2+2xy-2y^2+2y+10\)
cho x,y thỏa mãn \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\)tìm giá trị nhỏ nhất \(T=x^2+2xy-2y^2+2y+10\)
cho x,y thỏa mãn \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\) tìm gái trị nhỏ nhất của \(T=x^2+2xy-2y^2+2y+10\)
Tìm tất cả các bội số nguyên (x;y) thỏa mãn phương trình:
a) x2 - 2x + 2y2 = 2(xy +1)
b) x2 + 2y2 + 2xy - 2x = 7
cho x,y thỏa mãn \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\) .Tìm già trị nhỏ nhất \(T=x^2+2xy-2y^2+2y+10\)
tìm tất cả các cặp số(x; y) thỏa mãn\(\hept{\begin{cases}2\sqrt{2xy-y}+2x+y=10\\\sqrt{3y+4}-\sqrt{2y+1}+2\sqrt{2x+1}=3\end{cases}}\)
tìm tất cả các cặp số (x;y) thỏa mãn\(\hept{\begin{cases}2\sqrt{2xy-y}+2x+y=10\\\sqrt{3y+4}-\sqrt{2y+1}+2\sqrt{2x-1}=3\end{cases}}\)