PL

Cho x,y thỏa mãn ( \(\sqrt{2+x^2}\) - x) (y + \(\sqrt{2+y^2}\)) = 2. CMR: x=y

TC
7 tháng 7 2023 lúc 14:45

\(GT\Rightarrow\left(\sqrt{2+x^2}-x\right)\left(\sqrt{2+x^2}+x\right)\left(\sqrt{2+y^2}+y\right)=2\left(\sqrt{2+x^2}+x\right)\)

\(\Leftrightarrow2\left(\sqrt{2+y^2}+y\right)=2\left(\sqrt{2+x^2}+x\right)\)

\(\Leftrightarrow\sqrt{2+x^2}+x-\sqrt{2+y^2}-y=0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)\left(x+y\right)}{\sqrt{2+x^2}+\sqrt{2+y^2}}+\left(x-y\right)=0\)

TH1:\(x-y=0\Leftrightarrow x=y\left(đpcm\right)\)

TH2: \(x+y+\sqrt{2+x^2}+\sqrt{2+y^2}=0\)

Ta có: \(x\ge-\sqrt{x^2}\)\(y\ge-\sqrt{y^2}\)

\(\Rightarrow x+y+\sqrt{2+x^2}+\sqrt{2+y^2}\ge\sqrt{2+x^2}-\sqrt{x^2}+\sqrt{2+y^2}-\sqrt{y^2}>0\)

Do vậy TH2 không có x,y tm

Vậy ta có đpcm

 

Bình luận (0)

Các câu hỏi tương tự
TY
Xem chi tiết
VN
Xem chi tiết
NH
Xem chi tiết
TV
Xem chi tiết
WB
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
HN
Xem chi tiết