TT

Cho x,y là số hữu tỉ thỏa man x3+y3=2x2y2 Chứng minh \(\sqrt{1-\frac{1}{xy}}\)là số hữu tỉ

HM
28 tháng 9 2016 lúc 13:57

xét 1-1/xy:
=(xy-1)/xy
nhân 4x^3y^3 vào bt:
(4x^4y^4-4x^3y^3)/4x^4y^4
thay 4x^4y^4=(x^3+y^3)^2:
=[(x^3+y^3)^2-4x^3y^3]/(x^3+y^3)^2
=(x^6+y^6-2x^3y^3)/(x^3+y^3)^2
=(x^3-y^3)^2/(x^3+y^3)^2
=>căn(1-1/xy)=lx^3-y^3l / lx^3+y^3l là số hữu tỉ


 

Bình luận (0)
BV
28 tháng 9 2016 lúc 15:00

Cô phải đọc rất kĩ mới hiểu bài của Minh. Lần sau em chú ý dùng công thức có trong phần \(f\left(x\right)\)để bài làm được trực quan hơn.
Cảm ơn em đã trình bày bài giải !

Bình luận (0)
KT
28 tháng 10 2018 lúc 5:03

\(x^3+y^3=2x^2y^2\)

<=>   \(\left(x^3+y^3\right)^2=4x^4y^4\)

<=>  \(\left(x^3-y^3\right)^2=4x^4y^4-4x^3y^3\)

<=>  \(\left(x^3-y^3\right)^2=4x^4y^4\left(1-\frac{1}{xy}\right)\)

<=>  \(1-\frac{1}{xy}=\frac{\left(x^3-y^3\right)^2}{4x^4y^4}\)

<=>  \(\sqrt{1-\frac{1}{xy}}=\frac{\left|x^3-y^3\right|}{2x^2y^2}\) là số hữu tỉ

Bình luận (0)

Các câu hỏi tương tự
GL
Xem chi tiết
TT
Xem chi tiết
HM
Xem chi tiết
NL
Xem chi tiết
KN
Xem chi tiết
TQ
Xem chi tiết
VH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết