Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho \(x,y\)là hai số thực lớn hơn \(\sqrt{2}\). Chứng minh rằng \(x^4-x^3y+x^2y^2-xy^3+y^4>x^2+y^2\).
Cho a, b là hai số thực tùy ý. Chứng minh rằng:
1) \(a^2-ab+b^2\ge0\). Dấu đẳng thức xảy ra khi nào?
2) \(a^2-ab+b^2\ge\frac{1}{4}\left(a+b\right)^2\). Khi nào xảy ra đẳng thức?
Chứng minh rằng với mọi số thực \(x\) luôn có \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+1\ge0\).
Cho ba số \(x,y,z\) thỏa mãn điều kiện \(z\ge y\ge x\ge0\). Chứng minh rẳng
\(x\left(x-y\right)\left(x-z\right)+y\left(y-z\right)\left(y-x\right)+z\left(z-x\right)\left(z-y\right)\ge0\)
Cho \(x,y\)là hai số dương có tổng bằng 1. Chứng minh rằng \(\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\ge9\).
Chứng minh rằng với mọi số thực \(x\), luôn có \(4x^8-2x^7+x^6-3x^4+x^2-x+1>0\).
Chứng minh rằng với mọi bộ ba số khác 0 tùy ý \(a,b,c\) luôn có \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\).
Cho \(x+y>1\). Chứng minh rằng \(x^4+y^4>\frac{1}{8}\).
Cho \(0\le x,y,z,t\le1\). Chứng minh rằng \(\frac{x}{yzt+1}+\frac{y}{ztx+1}+\frac{z}{txy+1}+\frac{t}{xyz+1}\le3\).