AO

Cho \(x,y\) là hai số không âm thỏa mãn điều kiện  \(x^3+y^3=2\). Chứng minh rằng  \(x^2+y^2\le2\).

H24
22 tháng 3 2021 lúc 17:43

Áp dụng BĐT Bunhiacopxky:

\(\left(x^3+y^3\right)\left(x+y\right)\ge\left(x^2+y^2\right)^2\)

\(\Leftrightarrow2\left(x+y\right)\ge\left(x^2+y^2\right)^2\)

\(\Rightarrow4\left(x+y\right)^2\ge\left(x^2+y^2\right)^4\)  \(\left(1\right)\)

Áp dụng BĐT AM-GM: 

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) \(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) \(\Rightarrow8\left(x^2+y^2\right)\ge\left(x^2+y^2\right)^4\)

\(\Rightarrow8\ge\left(x^2+y^2\right)^3\)

\(\Rightarrow2\ge x^2+y^2\)hay \(x^2+y^2\le2\)

Bình luận (0)
 Khách vãng lai đã xóa
PH
13 tháng 7 2021 lúc 13:57

Áp dụng bất đẳng thức Cô si cho ba số dương ta có    

        x^3+x^3+1\ge3\sqrt[3]{x^3.x^3.1}\Leftrightarrow2x^3+1\ge3x^2, đẳng thức xảy ra khi và chỉ khi x=1.

Tương tự,  2y^3+1\ge3y^2. Cộng theo vế hai bất đẳng thức nhận được ta có

             2\left(x^3+y^3\right)+2\ge3\left(x^2+y^2\right)

Sử dụng giả thiết  x^3+y^3=2 suy ra đpcm. Đẳng thức xảy ra khi và chỉ khi      x=y=1

Bình luận (0)
 Khách vãng lai đã xóa
HH
29 tháng 8 2021 lúc 10:48

x=y=1

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
AO
Xem chi tiết
AO
Xem chi tiết
AO
Xem chi tiết
AO
Xem chi tiết
AO
Xem chi tiết
AO
Xem chi tiết
AO
Xem chi tiết
AO
Xem chi tiết
AO
Xem chi tiết