Cho x;y là 2 số thỏa mãn 3x2 - y2 = 2xy. Tính GTBT P = \(\frac{2xy}{6x^2+y^2+xy}\)
Cho x,y,z là các số khác 0 và đôi một khác nhau thỏa mãn 1/x +1/y + 1/z =0
Tính giá trị biểu thức A=yz/(x^2 +2yz) + xz/(y^2+ 2xz) + xy/(z^2+ 2xy)
cho các số x và y thỏa mãn \(\hept{\begin{cases}x^3-3x^2+6x+1=0\\y^3-6y^2+15y-9=0\end{cases}}\).Tính \(A=x^2+y^2+y-x-2xy\)
Mn giúp mình 2 câu này với
a)Tìm nghiệm nguyên của phương trình 2xy-y2-6x+4y=7
b)Cho x,y là các số nguyên dương sao cho x2+y2-x chia hết cho xy. Chứng minh x là số chính phương
Chứng minh rằng A lớn hơn hoặc bằng 0 vs mọi x,y khác 0
A=(75x^5 y^2-45x^4 y^3) : 3x^3 y^2-(5/2 xy^4-2xy^5) : 1/2xy^3
\(Cho:\)x ; y ; z là các số khác nhau đôi một \(\left(x\ne y\right);\left(y\ne z\right);\left(x\ne z\right)\)sao cho : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính các tổng sau : \(1.A=\frac{\left(yz-3\right)}{x^2+2yz}+\frac{\left(xz-3\right)}{y^2+2xz}+\frac{\left(xy-3\right)}{z^2+2xy}\)
\(2.B=\frac{\left(x^2-2yz\right)}{x^2+2yz}+\frac{\left(y^2-2xz\right)}{y^2+2xz}+\frac{\left(x^2-2xy\right)}{x^2+2xy}\)
Cho x,y,z là các số khác 0 và đôi một khác nhau thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\). Tính giá trị biểu thức \(M=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
cho 3x-y=3z và 2+y=7z. Tính giá trị của biểu thức \(M=\frac{x^2-2xy}{x^2+y^2}\)(x khác 0,y khác 0)