cho x,y thuộc Q,x khác 0, y khác 0 thỏa mãn \(x^3+y^3=2x^2y^2\).Chứng minh rằng A=\(\sqrt{1-\frac{1}{xy}}\)là một số hữu tỉ
giải giúp mình với
Cho a,b là các số hữu tỉ dương thỏa mãn X3+Y3=2X2Y2
Chứng Minh : \(\sqrt{1-\frac{1}{xy}}\)là 1 số hữu tỉ .
Tìm x,y thỏa mãn: \(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
Tìm nghiệm nguyên: \(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)
Tìm x,y,z nguyên dương thỏa mãn: \(\frac{x-y\sqrt{2020}}{y-z\sqrt{2020}}\) là số hữu tỉ và \(x^2+y^2+z^2\) là số nguyên tố
Giúp tôi bài này với :
Cho các số hữu tỉ thỏa mãn x5+y5=2x2y2. CMR \(\sqrt{1-xy}\)là số hữu tỉ
CMR A = \(\sqrt{1+\frac{1}{xy}}\)thuộc số hữu tỉ biết x; y đều là số hữu tỉ và \(^{x^3+y^3=2x^2y^2}\)
Cho x,y là số hữu tỉ thỏa man x3+y3=2x2y2 Chứng minh \(\sqrt{1-\frac{1}{xy}}\)là số hữu tỉ
Cho x,y là các số hữu tỉ thỏa mãn đẳng thức: \(x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=2\). Chứng minh rằng \(\sqrt{1+xy}\)là một số hữu tỉ
Cho x,y,z là các số thực dương thỏa mãn\(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\) 1. CMR \(\sqrt{\frac{xy}{x+y+2z}}+\sqrt{\frac{yz}{y+z+2x}+\sqrt{\frac{zx}{z+x+2y}}}\le\frac{1}{2}\)
Cho 3 số dương x, y, z, thỏa mãn :x +y + z = 1. CMR
\(\sqrt{2x^2+xy+2y^2}\) +\(\sqrt{2y^2+yz+2z^2}\)+ \(\sqrt{2z^2+yz+2z^2}\)
mn ơi ! giúp mk mới nha, mk cảm ơn nhiều