Cho 2 số thực x,y thỏa mãn: \(x^2+y^2=x\sqrt{1-y^2}+y\sqrt{1-x^2}\)CMR: 3x+4y\(\le5\)
1. Cho x,y là 2 số thực khác 0 thỏa mãn :5x2 +\(\frac{y^2}{4}\)+\(\frac{1}{4x^2}\)=\(\frac{5}{2}\).Tìm min, max của A=2013-xy
2.Cho x,y>0 thỏa mãn x+y=1.Tìm min của A=\(\frac{1}{x^2+y^2}\)+\(\frac{2}{xy}\)+4xy
3.Cho x,y là 2 số dương thoả mãn x+\(\frac{1}{y}\)\(\le\)1. Tìm min của C=32.\(\frac{x}{y}\)+2011.\(\frac{y}{x}\)
4.Cho x,y là 2 số thực dương thỏa mãn x+y=\(\frac{5}{4}\). Tìm min của A=\(\frac{4}{x}\)+\(\frac{1}{4y}\)
5.Giải phương trình : \(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}\)+\(\frac{1}{\sqrt{x+2}+\sqrt{x+1}}\)+\(\frac{1}{\sqrt{x+1}+\sqrt{x}}\)=1
Cho x, y là 2 số thực thỏa mãn \(x^2+y^2=x\sqrt{1-y^2}+y\sqrt{1-x^2}\)
Chứng minh rằng3x+4y\(\le\)5
1, Cho x,y: x+y=1 và x>0. Tìm Max A = x2y3
2, Cho x,y,z >0 thỏa mãn : xy+yz+zx=1. Tìm Max \(A=\frac{2x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\)
Cho x,y là các số thực dương thỏa mãn: (x+\(\sqrt{x^2+1}\))(y+\(\sqrt{y^2+1}\))=2
Tính Q= \(x\sqrt{y^2+1}\)+y\(\sqrt{x^2+1}\)
Tìm x,y thỏa mãn:
\(4y\sqrt{x-2}+2x\sqrt{y-1}=y\left(3x-2\right)\)
Bài 1: cho x,y là các số thực thõa mãn \(\sqrt{x+2}-y^3=\sqrt{y+3}-x^3.\)
tìm MIN của \(B=x^2-2y^2+2xy+2y+10\)
Bài 2: cho 3 số thực x,y,z thỏa mãn \(x^2+y^2+z^2=3\)
tìm MAX và MIN của \(P=x+y+2z\)
Tìm các số thực x,y thỏa mãn: \(2x+y^2-2y\sqrt{x-1}+2\sqrt{x-1}-4y+3=0\)(1000% ko sai đề)
Cho x,y là các số thực dương thỏa mãn x+y=4. Tìm min
M=\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}\)