US

cho x,y là 2 số dương và x+y=1

Tìm GTNN của biểu thức M=\(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

H24
22 tháng 3 2017 lúc 14:42

\(M=x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+4\)

\(M=\left(1-2xy\right)+\dfrac{1-2xy}{\left(xy\right)^2}+4=\dfrac{1}{\left(xy\right)^2}-\dfrac{2}{xy}-2xy+5\\ \)đặt 1/xy= t \(\left(x+y\right)=1\Rightarrow xy\le\dfrac{1}{4}\Rightarrow t\ge4\)

\(M=t^2-2t-\dfrac{2}{t}+5\)

khi t > 1 hiển nhiên M luôn tăng khi t tăng => \(Mmin=M\left(4\right)=4.4-2.4-\dfrac{2}{4}+5=\dfrac{25}{2}\)

Đẳng thức khi t=4 => xy=1/4 => x=y=1/2

Bình luận (0)

Các câu hỏi tương tự
LC
Xem chi tiết
H24
Xem chi tiết
HY
Xem chi tiết
PA
Xem chi tiết
PA
Xem chi tiết
TM
Xem chi tiết
NL
Xem chi tiết
CW
Xem chi tiết
AV
Xem chi tiết