Cho x, y khác 0 và xy>2019. CMR:
\(\frac{2019}{2019+x^2}+\frac{2019}{2019+y^2}\ge\frac{4038}{2019+xy}\)
Cho x, y khác 0 CMR:
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge\frac{x}{y}+\frac{y}{x}\)
cho x,y>0
CMR \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)
Cho x+y=1 và xy khác 0. CMR
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)
Cho x;y;z>0;\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) . CMR:\(\frac{\sqrt{x^2+2y^2}}{xy}+\frac{\sqrt{y^2+2z^2}}{yz}+\frac{\sqrt{z^2+2x^2}}{zx}\ge\sqrt{3}\)
cho x+y=1 :xy khác 0 .cmr: \(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)
cho x+y=1 và xy khác 0 . CMR :
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)
Cho \(x>y\ge0\). CMR: \(P=2017\left[\frac{x^4+y^4}{x^4-y^4}-\frac{xy}{x^2-y^2}+\frac{x+y}{2\left(x-y\right)}\right]\ge\frac{6051}{2}\)
cho x+y=0 và xy khác 0
CMR: \(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^3y^3+3}=0\)