Chứng minh x4+y4<x6/y2+y6/x4 với x và y khac 0
Cho x > 0; y > 0 và (\(\sqrt{x}\) +1)(\(\sqrt{y}+1\)) ≥4. Chứng minh rằng: x + y ≥ 2
cho x, y, z khác 0 và x+y+z=0. chứng minh rằng (x²+y²+z²)*3/(x*3+y*3+z*3)² >=4
cho x>0,y>0 và x+y<=1 chứng minh:1/(x2+xy)+1/(y2+xy)>= 4
Cho x,y thỏa mãn \(x^2+y^2-4x-2=0\) Chứng minh: \(10-4\sqrt{6}\le x^2+y^2\le10+4\sqrt{6}\)
Cho x,y>0 thỏa mãn \(\sqrt{xy}\left(x-y\right)=x+y\) . chứng minh x+y\(\ge\)4
Cho x,y,z>0 và xyz=1. Chứng minh rằng:
\(\frac{x}{y^4+2}+\frac{y}{z^4+2}+\frac{z}{x^4+2}\ge1\)
cho ∛x + ∛y = 6
Tìm tất cả các giá trị của x và y để 2 ( x+y) = 3(∛x2y + ∛xy2)