Cho x,y thỏa mãn : x2 + y2 - 2x - 4y <= 0
C<R : x + 2y <= 10
tìm các cặp (x,y) dương thỏa mãn
\(2x^2+2y^2-x^2y^2-6xy-4x+4y+10=0\)
sao cho xy đạt GTNN
cho x; y thỏa mãn: \(x^2+y^2-2x-4y\le0\). chứng minh: \(x+2y\le10\)
Cho x,y,z thỏa mãn \(x^2+y^2+z^2-2x-4y+6z\le2\). Tìm GTNN và GTLN của
\(P=x+2y-2z\)
cho x,y,z>0
chứng minh rằng
\(\sqrt{x^2+xy+2y^2}+\sqrt{y^2+yz+2z^2}+\sqrt{z^2+zx+2x^2}\ge2\left(x+y+z\right)\)
Tìm các số thực x,y thỏa mãn: \(2x+y^2-2y\sqrt{x-1}+2\sqrt{x-1}-4y+3=0\)(1000% ko sai đề)
Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn: \(^{x^2+2y^2-3xy+2x-4y+3=0}\)
Cho 2 số x,y dương thỏa mãn: \(x^2+x^2y^2-2y=x^3+2y^2-4y+3=0\)Tính giá trị của Q=\(x^2+y^2\)
tìm các số thực x,y thỏa mãn x 2+y^2-2y√x-1+2√x-1-4y+3=0