Cho x,y dương. CMR: \(x+y\ge\frac{12xy}{9+xy}\)
Cho x,y dương. Chứng minh \(x+y\ge\frac{12xy}{9+xy}\)
Cho x,y,z>0 và x+y+z=3. CMR: \(\frac{x^3}{y^3+8}+\frac{y^3}{z^3+8}+\frac{z^3}{x^3+8}\ge\frac{1}{9}+\frac{2}{27}\left(xy+yz+xz\right)\)
Cho x,y,z>0 cmr: \(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge xy+yz+zx\)
cho x;y;z>0 thỏa mãn x+y+z=3.CMR:\(\frac{x}{x+yz}+\frac{y}{y+zx}+\frac{z}{z+xy}\ge\frac{3}{2}\)
Cho x y z > 0. CMR
\(\frac{X^3}{X^2+XY+Y^2}+\frac{Y^3}{Y^2+YZ+Z^2}+\frac{Z^3}{Z^2+ZX+X^2}\ge\frac{X+Y+Z}{3}\)
Cho a,b,c>0, \(x^2+y^2+y^2=3\)
CMR: \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xy}}+\frac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
Cho x;y;z>0 thỏa mãn xyz=1.CMR \(A=\frac{1}{x+y+z}-\frac{2}{xy+yz+zx}\ge\frac{-1}{3}\)
cho x,y,z >0 thỏa mãn xy+yz+zx=673
CMR: \(\frac{x}{x^2-yz+2019}+\frac{y}{y^2-xz+2019}+\frac{z}{z^2-yx+2019}\ge\frac{1}{x+y+z}\)