LL

Cho :  

         \(x=\frac{1}{3}\left(\sqrt[3]{\frac{23+\sqrt{513}}{4}}+\sqrt[3]{\frac{23-\sqrt{513}}{4}}-1\right)\)

Hãy tính : \(A=x^3+x^2+1\)

BH
5 tháng 5 2016 lúc 12:03

Đặt \(a=\sqrt[3]{\frac{23+\sqrt{513}}{4}};b=\sqrt[3]{\frac{23-\sqrt{513}}{4}}\Rightarrow a^3+b^3=\frac{23}{2}\)

\(ab=1\) và \(3x+1=a+b\)

Suy ra : \(\left(3x+1\right)^3-27x^3+27x^2+9+1=27\left(x^3+x^2+1\right)+3\left(3x+1\right)-29\)

hay : \(A=\frac{\left(3x+1\right)^3-3\left(3x+1\right)+29}{27}=\frac{\left(a+b\right)^3-3\left(a+b\right)+29}{27}\)

                                             \(=\frac{a^3+b^3+3ab\left(a+b\right)-3\left(a+b\right)+29}{27}=\frac{\frac{23}{2}+29}{27}=\frac{3}{2}\)

Vậy giá trị của biểu thức đã cho là \(A=\frac{3}{2}\)

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
PB
Xem chi tiết
LB
Xem chi tiết
TM
Xem chi tiết
VC
Xem chi tiết
ND
Xem chi tiết
DK
Xem chi tiết
NL
Xem chi tiết
TT
Xem chi tiết