Cmr \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
mả x/a + y/b + z/c = 1 va a/x + b/y + c/z = 0
`Cho x/a + y/b + z/c = 1 va a/x + b/y+ c/z = 0 cmr x2/ a2 + y2/ b2+ z2/ c2 = 1
Giup mink nhanh nha:
1. Cho: x+y+z=3
va x^3+y^3+z^3+6=3(x^2+y^2+z^2)
Tinh P= (x^2015-1)(y^2015-1)(z^2015-1)
2.Cho a,b,c khac nhau va a^2-b=b^2-c=c^2-a. Tinh Q=(a+b+1)(b+c+1)(c+a+1)
Bài 1: a;b;c > 0 và abc = 1
Chứng minh : \(\dfrac{a}{b^4+c^4+a}+\dfrac{b}{a^4+c^4+b}+\dfrac{c}{a^4+b^4+c}\le1\)
Bài 2: x;y;z > 0 và x + y + z = 2
Chứng minh : \(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
Cho x/a + y/b + z/c =1 và a/x + b/y + c/z = 0 .
Chưng minh rằng x^2/a^2 + y^2/b^2 + z^2/c^2 =1
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
Cho a,b,c khác 0 va tính x^2011+y^2011+z^2011
Biết (x^2+y^2+z^2) / (a^2+b^2+c^2) = x^2/a^2 +y^2/b^2 +z^2/c^2
Bài 1: Cho x,y,z khác 0 và x+y+z=0
Tính giá trị của biểu thức
1/y2 + z2 - x2 + 1/x2 + y2 - z2 + 1/x2+z2 - y2
Bài 2: Cho x,y,z khác 0 và 1/x - 1/y - 1/z =1 và x=y+z
CMR 1/x + 1/y +1/z =1
Bài 3: Cho a,b,c khác 0 và x2+y2+z2/a2+b2+c2 = x2/a2 + y2/b2 +z2/c2
CMR: x=y=z=0
Bài 4: Cho các số a,b,c thỏa mãn:
a+b+c=1
a2 + b2 +c2=1 và x/a=y/b=z/c
CMR: xy+yz+xz=0
Cho a,b,c và x,y,z khác 0 và a+b+c=0 ; x+y+z=0 ,x/a + y/b + z/c =0. CMR : a^2 . x + b^2 . y + c^2 . z