DN

Cho x3+y3 +3(x2+y2) +4(x+y) + 4 =0. Tìm GTLN của M= 1/x+1/y

DH
23 tháng 6 2021 lúc 15:32

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+3\left(x+y\right)^2-6xy+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+y\right)^2+x+y+2\right)-3xy\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(x^2+y^2+2xy+x+y+2-3xy\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+2\right]=0\)

\(\Leftrightarrow x+y+2=0\)

\(\Leftrightarrow x+y=-2\)

\(M=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{-2}=-2\)

Dấu \(=\)khi \(x=y=-1\).

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TC
Xem chi tiết
AT
Xem chi tiết
PB
Xem chi tiết
KS
Xem chi tiết
NA
Xem chi tiết
MH
Xem chi tiết
NU
Xem chi tiết
PB
Xem chi tiết
BT
Xem chi tiết