Đặt \(x=a,1+y=b\).
Ta có:
\(a^3+b^3=2ab\)
\(\Leftrightarrow a^4+ab^3=2a^2b\)
\(\Leftrightarrow\left(a^2-b\right)^2-b^2=-ab^3\)
\(\Leftrightarrow\left(a^2-b\right)^2=b^2\left(1-ab\right)\)
\(\Leftrightarrow1-ab=\left(\frac{a^2-b}{b}\right)^2\)
Ta có đpcm.
bạn ơi sao mình thay x=1, y=\(\frac{-3+\sqrt{5}}{2}\) ( thỏa mãn đề bài) thì \(\sqrt{1-xy-x}\)không là số hữu tỉ
Ở đây, đề còn thiếu phần " \(x,y\)đều là số hữu tỉ" nữa bạn nhé.