DG

Cho \(x^2+2y\)là số chính phương(x,y e N). C/m \(x^2+y\)là tổng 2 số chính phương

ND
11 tháng 10 2020 lúc 14:46

Ta đặt \(x^2+2y=k^2\Leftrightarrow2y=k^2-x^2=\left(k-x\right)\left(k+x\right)\) \(\left(k\inℕ\right)\)

Vì k - x và k + x cùng tính chẵn lẻ vả lại 2y chẵn

=> k - x và k + x cùng chẵn => k - x và k + x cùng chia hết cho 2

Mà \(x^2+2y=k^2\Leftrightarrow\hept{\begin{cases}x^2=k^2-2y\\y=\frac{k^2-x^2}{2}\end{cases}}\)

Thay vào ta được: \(x^2+y=k^2-2y+y=k^2+y\)

\(=k^2+\frac{k^2-x^2}{2}=\frac{k^2+x^2}{2}\)

\(=\frac{2k^2+2x^2}{4}=\frac{\left(k^2+2kx+x^2\right)+\left(k^2-2kx+x^2\right)}{4}\)

\(=\frac{\left(k+x\right)^2+\left(k-x\right)^2}{4}=\left(\frac{k+x}{2}\right)^2+\left(\frac{k-x}{2}\right)^2\) là tổng 2 SCP

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa