Ta co :
\(x^2=\frac{x}{y};yz=\frac{z}{x}\Rightarrow x^2=yz=\frac{x}{y}=\frac{z}{x}\)
Dat : \(\frac{x}{y}=\frac{z}{x}=k\)
x=yk
z=xk
\(\frac{x+y}{x-y}=\frac{yk+y}{yk-y}=\frac{y.\left(k+1\right)}{y.\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{z+x}{z-x}=\frac{xk+x}{xk-x}=\frac{x.\left(k+1\right)}{x.\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Vậy từ (1) và (2) suy ra \(\frac{x+y}{x-y}=\frac{z+x}{z-x}\)