\(VT\ge\dfrac{4}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\) (vì \(x+y\le1\) )
Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Ta có đpcm
\(VT\ge\dfrac{4}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\) (vì \(x+y\le1\) )
Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Ta có đpcm
Tìm giá trị nhỏ nhất của \(A=\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy\) Với \(x>0;\) \(y>0;\) \(x+y\le1\)
a)Chứng minh x3 + y3 ≥xy(x+y) với x,y≥0
b)Cho x,y,z>0 thỏa mãn xyz=1
CMR:\(\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\le1\)
Rút gọn các biểu thức sau:
a) A=\(\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)(x≥0 , y≥0 , xy≠0)
b) B=\(\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)(x≥0 , y≥0 , x≠y)
c) C=\(\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)(a≥0 , a≠\(\dfrac{1}{4}\))
d) D=\(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)(a≥0 , a≠4)
Cho x, y, z khác 0, \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Chứng minh rằng: \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)
Cho a, b, c > 0 và x + y + z = 3 .
CMR : \(\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+zx}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)
Cho \(0< x,y< 1\) và \(\dfrac{x}{1-x}+\dfrac{y}{1-y}=1\)
Tính \(P=x+y+\sqrt{x^2-xy+y^2}\)
Cho x, y, z > 0 và x+y+z=1.
CMR : \(\dfrac{1-x^2}{x+yz}+\dfrac{1-y^2}{y+zx}+\dfrac{1-z^2}{z+xy}\ge6\)
cho x,y,z ≥ 0, chứng minh
1)\(\dfrac{1}{\sqrt{x+y}}\ge\dfrac{4}{4+x+y}\)
2)\(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{4}{x^2+yz}\)
a, Cho x, y, z > 0 \(\in[0,1]\). Chứng minh:
\(\dfrac{x}{yz+1}+\dfrac{y}{xz+1}+\dfrac{z}{xy+1}< 2\)
b, x, y, z > 0 : xyz = 1. Chứng minh:
\(\dfrac{1}{x^2+2y+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\le2\)