cho x^4/a+y^4/b=(x^2+y^2)/(a+b), và x^2+y^2=1 cmr x^2018/a^1009 y^2018/b^1009=2/(a b)^1009
cho các số a,b,x,y thoả mãn a+b=x+y và a^4+b^4=x^2+y^2.Cm a^2018+b^2018=x^2018+y^2018
Giúp mk nha mn
1)cho 3 số x, y,z thỏa mãn điều kiện x+y+z=2018 và x^3+y^3+z^3=2018^3. Cmr (x+y+z)^3=x^2017+y^2017+z^2017
2)
tìm các cặp số nguyên (x y) biết x^2-4xy+5y^2-16=0
3)Cho 3 số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2018
4)tính giả trị biểu thức A=a^4+b^4+c^4
x2+y2=a2+b2
và a+b=x+y
cmr:a2018+b2018=x2018+y2018
Cho \(\frac{x^4}{a}+\frac{y^4}{b}=1\)và \(x^2+y^2=1\).CMR: \(\frac{x^{2018}}{a^{1009}}+\frac{y^{2018}}{b^{1009}}=\frac{2}{\left(a+b\right)^{1009}}\).
cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b};\) \(x^2+y^2=1\)cmr
a.\(bx^2=ay^2\)
b.\(\frac{x^{2018}}{a^{1004}}+\frac{y^{2018}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)
cho: x^2+y^2+z^2+1/x^2+1/y^2+1/z^2=6 . tinh A=x^2018+y^2018+z^2018
Cho các số thực x,y,z thỏa mãn
3(x^2+y^2+z^2)=(x+y+z) và x^2018+y^2018+z^2018=27^671
tính gt của bt A=(x+2y-4z)^2018/3^2018 + 2019
Cho x4/a+y4/b=1/a+b, x2+y2=1
Chứng minh: x2018/a1009+y2018/b1009=2/(a+b)1009