\(Q=x^2+y^2+xy=\left(x^2+y^2-2xy\right)+3xy=\left(x-y\right)^2+3xy=3xy+4\)
\(x-y=2\Rightarrow y=x-2\)thay vào Q ta được :
\(Q=3x\left(x-2\right)+4=3\left(x^2-2x\right)+4=3\left[\left(x^2-2x+1\right)-1\right]+4=3\left(x-1\right)^2+1\)
Vì \(3\left(x-1\right)^2\ge0\forall x\) nên \(Q=3\left(x-1\right)^2+1\ge1\forall x\)
Dấu "=" xảy ra <=> \(x=1\Rightarrow y=-1\)
Vậy GTNN của Q là 1 tại \(x=1;y=-1\)