Violympic toán 9

AJ

Cho x, y, z≥0 thỏa mãn x2+y2+z2+2xyz=1. Tìm GTLN của P=xy+yz+xz-2xyz

NL
16 tháng 2 2020 lúc 14:35

Bài này x;y;z phải dương chứ nhỉ? Có dấu "=" ở số 0 thế kia thì bối rối quá

Dự đoán dấu "=" xảy ra tại \(x=y=z=\frac{1}{2}\)

Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn tồn tại 2 số nằm cùng phía so với \(\frac{1}{2}\) ; giả sử đó là x và y

\(\Rightarrow\left(x-\frac{1}{2}\right)\left(y-\frac{1}{2}\right)\ge0\Leftrightarrow\frac{1}{2}\left(x+y\right)-xy\le\frac{1}{4}\)

\(\Leftrightarrow x+y-2xy\le\frac{1}{2}\)

Mặt khác:

\(1=2xyz+x^2+y^2+z^2\ge2xyz+2xy+z^2=2xy\left(1+z\right)+z^2\)

\(\Rightarrow1-z^2\ge2xy\left(1+z\right)\Leftrightarrow\left(1-z\right)\left(1+z\right)\ge2xy\left(1+z\right)\)

\(\Leftrightarrow1-z\ge2xy\Rightarrow xy\le\frac{1-z}{2}\)

\(\Rightarrow P=xy+z\left(x+y-2xy\right)\le\frac{1-z}{2}+\frac{z}{2}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
AD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LM
Xem chi tiết
BA
Xem chi tiết
NT
Xem chi tiết
UI
Xem chi tiết
VL
Xem chi tiết