TN

Cho x, y, z thỏa mãn x+y+z=1 và 1/x + 1/y + 1/z=0.. Tính A=x2 + y2 + z2

SV
25 tháng 1 2015 lúc 16:35

Từ gt 1/x + 1/y + 1/z = 0 suy ra xy + yz + zx = 0 (1)

Mặt khác x + y + z =1. Bình phương 2 vế ta đc : : x+ y2 + z2 + 2(xy + yz + zx) = 1 (2)

Từ (1) và (2) suy ra x2 + y2 + z2 =1. Vậy A  =1 

Bình luận (0)
HT
25 tháng 1 2015 lúc 19:09

Minh lam them cach khac nua gop vui: x^2 + y^2 + z^2 = (x+y)^2 - 2xy + z^2 = (1- z)^2 - 2xy + z^2 = 1 - 2z - 2xy + 2z^2

Tuong tu = 1 - 2x - 2yz + 2z^2 = 1 - 2y - 2zx + 2x^2. Cộng vế theo vế của 3 đẳng thức trên ta được:

3(x^2 + y^2 + z^2) = (1+1+1) - 2(x+y+z) - 2(xy + yz + zx) + 2(x^2 + y^2 + z^2) <=> x^2 + y^2 + z^2 = 3 - 2.1 - 2xyz(1/x + 1/y + 1/z) = 1

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
C1
Xem chi tiết
DT
Xem chi tiết
NP
Xem chi tiết
NH
Xem chi tiết
ND
Xem chi tiết
PB
Xem chi tiết
OE
Xem chi tiết