Ôn tập toán 7

GD

Cho x , y , z thõa mãn : \(x^2=yz;y^2=xz;z^2=xy\) CMR : x=y=z

IM
16 tháng 8 2016 lúc 8:52

Theo đề ra ta có

\(\frac{x}{y}=\frac{z}{x};\frac{y}{x}=\frac{z}{y};\frac{z}{x}=\frac{y}{z}\)

\(\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\begin{cases}x=y\\y=z\\z=x\end{cases}\)

=> x=y=z (đpcm )

Bình luận (0)
VT
16 tháng 8 2016 lúc 8:52

Ta có : \(x^2=yz;y^2=xz;z^2=xy\)

\(\Rightarrow\frac{x}{y}=\frac{z}{x};\frac{x}{y}=\frac{y}{z};\frac{z}{x}=\frac{y}{z}\)

\(\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

 \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\) ( vì trùng nhau )

\(\Rightarrow x=y;y=z;z=x\)

\(\Rightarrow x=y=z\)

Bình luận (0)
HN
16 tháng 8 2016 lúc 9:18

Cộng các đẳng thức trên với nhau được : 

\(x^2+y^2+z^2=xy+yz+zx\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)=2\left(xy+yz+zx\right)\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\) 

Mà \(\left(x-y\right)^2\ge0\) , \(\left(y-z\right)^2\ge0\) , \(\left(z-x\right)^2\ge0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

Do đó dấu "=" xảy ra khi và chỉ khi x = y = z

Vậy x = y = z

 

Bình luận (0)

Các câu hỏi tương tự
XT
Xem chi tiết
PT
Xem chi tiết
ND
Xem chi tiết
PM
Xem chi tiết
H24
Xem chi tiết
QD
Xem chi tiết
PT
Xem chi tiết
NH
Xem chi tiết
PH
Xem chi tiết