cmr
M=\(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\) (x,y,z,t\(_{\in}\) \(ℕ^∗\) ) co gia tri khong phai la so tu nhien
Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tinh gia tri cua da thuc\(P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
Cho x,y,z thuôc̣ N sao. CMR
M=\(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)
không phaỉ la sô tu nhiên
Cho \(\frac{x}{y+z+t}\)=\(\frac{y}{z+t+x}\)=\(\frac{z}{t+x+y}\)=\(\frac{t}{x+y+z}\)
CMR : bieu thuc sau co gia tri nguyen P = \(\frac{x+y}{z+t}\)+\(\frac{y+z}{t+x}\)+\(\frac{z+t}{x+y}\)+\(\frac{t+x}{y+z}\)
cho dãy tỉ số bằng nhau :$\frac{x}{y+z+t}$=$\frac{y}{z+t+x}$=$\frac{z}{t+x+y}$=$\frac{t}{x+y+z}$ cmr : "$\frac{x+y}{z+t}$=$\frac{y+z}{t+x}$=$\frac{z+t}{x+y}$=$\frac{t+z}{y+z}$"
Cho biết:\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{x+t+y}=\frac{t}{x+y+z}.\)
Tính giá trị \(M=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}.\)
Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\) và x;y;z;t khác 0
Tính M biết \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
cho x,y,z,t thuoc R* sao cho:
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tính P=\(\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{x+y}+\frac{x+t}{y+z}\)
Cho x,y,z,t \(\in\)N* .CM
M=\(\frac{x}{x+y+z}+\frac{y}{x+z+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)có giá trị ko là STN