cho các số thực x,y,z thỏa mãn \(\left(x-y +z\right)^2\)+\(\sqrt{y^4}\)+\(\left|1-z^3\right|\) \(\le\) 0
Chứng minh rằng \(x^{2023}\)+\(y^{2024}\)+\(z^{2025}\)=0
Cho x ,y ,z thỏa mãn : x+ y+z =0 . Chứng minh rằng : xy+2yz+3zx ≤ 0
Cho x,y,z,t khác 0 thỏa mãn y^2=zt, z^2=yt
Chứng minh x/t = (x^3 + y^3 + z^3)/(y^3 + z^3 + t^3)
cho a, b, c, x, y, z khác 0 thỏa mãn: x/a = y/b = z/c chứng minh: a^2/x + b^2/y + c^2/z +(a+b+c)^2/x+y+z
Cho các số thực x,y,z thỏa mãn: x+y+z=0;−1≤x,y,z≤1x+y+z=0;−1≤x,y,z≤1 Chứng minh rằng: \(x^2+y^4+z^6\text{≤2}\)
hộ mik với
Tìm x, y, z biết:\(\sqrt{\left(x-2024\right)^2}\) + ∣ x+ y -4z ∣ + \(\sqrt{5y^2}\) = 0 với x,y,z ϵ R
Cho a,b ϵ R. Chứng minh rằng: |a|+|b|≥|a+b|.
Áp dụng tìm x, y, z biết |x-23|+|x-24|+|x-25|+|y-4|+|z-2019|
Cho x,y,z thuộc Z thỏa mãn:(x-y)(y-z)(z-x)=x+y+z.Chứng minh rằng:x+y+z chia hết cho 27
Cho x,y,z ≠ 0 thỏa mãn: 2(x+y) = 3(y+z) = 4(x+z)
Tính P = \(\dfrac{x}{y}\)+\(\dfrac{y}{z}\)+\(\dfrac{z}{x}\)
cho x,y,z khác 0 thỏa mãn 3x+y+z/x = x+3y+z/y = x+y+3z/z. Tính M= (x+y).(y+z).(z+y)/x.y.z