HN

Cho x, y. z là các số thực không âm thỏa mãn \(12x+10y+15z\le60\). Tìm GTLN của \(P=x^2+y^2+z^2-4x-4y-z\)

D2
31 tháng 7 2019 lúc 12:10

Xét \(5P-\left(12x+10y+15z\right)=5x^2-32x+5y^2-30y+5z^2-20z.\)

                                                              \(=5x\left(x-6,4\right)+5y\left(y-6\right)+5z\left(z-4\right).\)(1)

Mà \(x,y,z\ge0\)nên từ \(12x+10y+15z\le60\)suy ra \(\hept{\begin{cases}12x\le60\\10y\le60\\15z\le60\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\y\le6\\z\le4\end{cases}\Rightarrow}}\hept{\begin{cases}x-6,4< 0\\y-6\le0\\z-4\le0\end{cases}\Rightarrow\hept{\begin{cases}x\left(x-6,4\right)\le0\\y\left(y-6\right)\le0\\z\left(z-4\right)\le0\end{cases}.}}\)(2)

Từ (1) và (2) suy ra \(5P-\left(12x+10y+15z\right)\le0\)

\(\Rightarrow P\le\frac{12x+10y+15z}{5}\le\frac{60}{5}=12.\)

Vậy GTLN của P=12, Dấu '=' xảy ra khi \(\hept{\begin{cases}x\left(x-6,4\right)=y\left(y-6\right)=z\left(z-4\right)=0\\12x+10y+15z=60\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y=0;z=4\\x=z=0;y=6\end{cases}.}}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LC
Xem chi tiết
NC
Xem chi tiết
HC
Xem chi tiết
HA
Xem chi tiết
TK
Xem chi tiết
HT
Xem chi tiết
KB
Xem chi tiết
BQ
Xem chi tiết