Cho x,y,z là các số thực dương, chứng minh \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)
cho x,y,z là các số thực dương thỏa xy+yz+xz=1 c/m x^3+y^3+z^3>=1/căn 3
Cho x , y, z là các số thực dương , cm :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)
Hộ mình với !!
cho x,y,z là số thực dương thỏa mãn xy+yz+xz=xyz
cmr \(\frac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\frac{yz}{x^3\left(1+y\right)\left(1+z\right)}+\frac{xz}{y^3\left(1+x\right)\left(1+z\right)}\ge\frac{1}{16}\)
Cho x,y,z là các số thực dương : xy+yz+xz=1. Tìm min của P = ( căn( x2 +1) + căn(y2 +1) + căn(z2 +1))/(x+y+z)
cho x,y,z là các số thực dương thỏa mãn xy+yz+xz=xyz(x+y+z)
CMR \(\frac{1}{2x+1}+\frac{1}{2y+1}+\frac{1}{2z+1}\ge1\)
cho 3 số thực dương x,y,z thỏa mãn xyz=1 cmr xy/(x^3+y^3+xy0+yz/(y^3+z^3+yz)+xz/(x^3+z^3+xz)<=1
a) cho x,y là các số không âm
CM: \(x^2+y^2+1>x\sqrt{y^2+1}+y\sqrt{x^2+1}.\)
b) cho x,y,z là các số thực dương thỏa mãn điều kiện \(x+y+z=\sqrt{xyz}\)
CM:\(xy+yz+xz\ge9\left(x+y+z\right).\)
cho x,y,z là các số thực dương thỏa mãn: xy+yz+xz=xyz(x+y+z)
chứng minh rằng: \(\frac{1}{2x+1}+\frac{1}{2y+1}+\frac{1}{2z+1}>=2\)